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Swallowing accelerometry is a biomechanical approach for the assessment of difficulties during

deglutition. However, the effects of various swallowing tasks and different anthropometric/

demographic variables on the statistical behavior of these accelerometric signals are unknown. In

particular, to understand the statistical persistence of these signals, we used detrended fluctuation

analysis (DFA) to analyze accelerometric data collected from 408 healthy participants during dry, wet

and wet chin tuck swallowing tasks. The results of DFA were then examined for potential influences of

age, gender or body mass index. Several important conclusions were reached. First, the strongest

persistence was observed for the wet chin tuck swallows. Second, the vibrations in the superior–inferior

(S–I) direction generally have stronger temporal dependencies than those in the anterior–posterior

(A–P) direction. Both of these phenomena can be attributed to the dominating influence of head

movements on the amplitude of vibrations in the S–I direction. Third, gender, age and body mass index

of the participants did not impact the observed persistence for dry and wet chin tuck swallows, while a

gender effect was identified for wet swallows. In particular, male participants experienced more

Brownian-like statistical dependencies in their swallowing signals. Future developments in the field

should attempt to remove signal components associated with strong statistical persistence, as they tend

to be associated with non-swallowing phenomena.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Swallowing accelerometry is a technique involving the
attachment of an accelerometer at the patient’s neck. The
technique has emerged as an alternative investigational approach
for non-invasive assessment of swallowing disorders [1,2]. Even
though single-axis accelerometers were initially used [3–6], it has
been shown recently that dual-axis accelerometers yield more
information and enhance diagnostic capabilities [7–9]. The
advantage of dual-axis swallowing accelerometry is that it
reflects the two-dimensional movement of the hyoid and the
larynx during swallowing [10].

Non-swallowing related phenomena, including small low-fre-
quency vibrations observed in the baseline state (e.g., [9]) or head
motions during swallowing (e.g., [7,8]), can alter the amplitude of
swallowing accelerometry signals. A recent contribution showed
that the small vibrations present in baseline dual-axis accelerometry
signals (without swallows) and various head motions introduce
strong correlations in these signals [11]. Furthermore, the A–P axis
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experienced stronger statistical persistence in comparison to the S–I
axis [11]. However, several open questions exist about the nature of
these observed dependencies when swallows are actually present in
the signals. First, it is unknown how the presence of swallows will
alter the observed baseline statistical persistence, i.e., whether the
dependencies become stronger or weaker. Second, given that
various maneuvers (e.g., chin tuck) are used in practice to ensure
safe deglutition, their potential influence on the observed baseline
statistical persistence is also of interest. Third, it is unknown
whether any demographic/anthropometric variables such as age,
gender or body mass index impact statistical persistence, since in
the previous contributions it has been shown that these variables
impact swallowing (e.g., [7]). The analysis conducted in this paper
answers these open questions about statistical persistence in dual-
axis swallowing accelerometry signals. These answers will help us to
understand whether or not it is necessary to remove signal
components associated with long-range dependencies (if possible)
in swallowing accelerometry for clinical decision support.

The main contribution of this paper is the characterization of
statistical persistence in dual-axis swallowing accelerometry
signals. Previous research has only unveiled scaling character-
istics of baseline cervical accelerometry in the absence of
swallowing. In the following sections we describe the data
collection and analysis used to probe the effects of swallowing,
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the chin tuck maneuver, gender and age on the statistical
persistence of dual-axis cervical accelerometry signals.

2. Methodology

2.1. Detrended fluctuation analysis

From previous studies, it is known that dual-axis swallowing
accelerometry signals are non-stationary [8]. Detrended
fluctuation analysis (DFA) is a scaling analysis method that
estimates an exponent a indicative of the (auto-)correlation
properties of a non-stationary time series [12,13]. DFA facilitates
detection of long-range behavior embedded in non-stationary
time series while avoiding spurious long-range correlations that
may be artifacts of non-stationary trends [14,15].

In short, DFA evaluates deviations of signal segments around local
trends through a series of steps as shown in Fig. 1. For full details, the
reader is referred to previous contributions (e.g., [12–15]). From the
nature of the algorithm, an increasing length of a segment produces
an increasing value of the fluctuation function since longer segments
can introduce greater deviations from a local trend. Therefore, these
fluctuations are modeled as having a power-law behavior with
respect to the segment length, while being independent of external
trends and signal amplitude:

FðMÞpMa ð1Þ

where F(M) represents the fluctuation function, and M represents the
segment length. In other words, a is the slope of the line observed in
the log–log representation of F(M) as a function of M. In general, a
can be related to correlation properties of a time series and its power
spectral density [12,16,17]. Additionally, a is also related to the
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Fig. 1. DFA steps: (a) We begin with a raw time series. (b) Secondly, we evaluate the

length. (c) Thirdly, a local trend for each of the segments is calculated by a least-squar

determined. (d) As the last step, the variance for all segments is averaged and its squa

exponent, a, is the slope of the least squares fitted line.
Hurst exponent such that a¼H for 0oHo1 and a¼Hþ1 for H41
[18–20]. From a physical point of view, a denotes the ‘‘roughness’’ of
a time series with higher values of a denoting smoother time series.
For example, white Gaussian noise is considered very rough and its
a¼ 0:5, while a¼ 1:5 for the Brownian motion, which is considered
very smooth [21].
2.2. Data collection

In this paper, we analyzed the data collected in [7,22–24]
under the study protocol that was approved by the research ethics
boards of the Toronto Rehabilitation Institute and Holland
Bloorview Kids Rehabilitation Hospital, both located in Toronto,
Ontario, Canada. In brief, 408 healthy adult participants (aged
18–65) with no known swallowing disorders were recruited and
all provided written consent. In order to acquire swallowing
accelerometry signals, a dual-axis accelerometer (ADXL322,
Analog Devices) was placed on the neck of each participant
anterior to the cricoid cartilage and secured with double-sided
tape. The two axes were positioned in the anterior–posterior
(A–P) and superior–inferior (S–I) directions. The accelerometer
has a measurement range of 75 g, a bandwidth of 2.5 kHz, a
resonant frequency of 5.5 kHz, and a sensitivity of 174 mV/g. A
power supply (Model 1504, BK Precision) set at 5 V was used to
power the accelerometer. During the data collection, participants
completed three types of swallows: five saliva swallows, five
water swallows by cup with their chin in the natural position (i.e.,
perpendicular to the ear) and five water swallows in the chin-
tucked position. The entire data collection session lasted 15 min
per participant.
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cumulative sum of the series and divide into non-overlapping segments of equal

e fit of the data. Then, the trend is removed and the variance around each trend is

re root function yields the fluctuation at segment length M. The estimated scaling



Table 2
a values in the A–P direction arranged by participant age.

18rAgeo35 35rAgeo45 45rAgeo55 55rAgeo65

Dry swallows 0.9070.24 0.8670.22 0.8870.23 0.8770.21

Wet swallows 0.9870.25 0.9570.23 0.9670.22 0.9870.22

Wet chin tuck 1.2570.23 1.2770.24 1.2470.22 1.3070.22

Table 3
a values in the S–I direction arranged by participant age.

18rAgeo35 35rAgeo45 45rAgeo55 55rAgeo65

Dry swallows 1.1070.15 1.0970.15 1.0870.16 1.0870.16

Wet swallows 1.1370.18 1.1570.15 1.1470.15 1.1470.15

Wet chin tuck 1.4070.17 1.4270.18 1.4670.18 1.4270.15
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2.3. Data analysis

DFA was carried out to examine statistical persistence in the
A–P and S–I directions for the dual-axis swallowing accelerometry
signals. The value of M in DFA was chosen from the predeter-
mined set M defined as in [11]

M¼ fM : MAN and bN=100crMrbN=10cg ð2Þ

where the set contains 50 points equally spaced on a logarithmic
scale. These values were chosen based on previous contributions
showing that very large M are preferred in order to deal with
possibly very long correlations [13]. However, as M approaches N

the error in the estimation of a increases significantly [25]. In fact,
the error associated with the estimation of a is inversely
proportional to the square root of the ratio M/N [13]. Similarly,
it has been suggested that the minimal value of M should be
chosen such that Markovian correlations do not affect the
estimation of a [13]. Therefore, we used N/100 and N/10 for the
minimal and maximal values of M, respectively, since they
provided satisfactory results and the set M provided us with a
sufficient number of points to carry out an accurate fitting of a
local trend [11]. A first order polynomial was used for detrending
the signals considered in this paper, given that higher order
polynomials tend to overfit the local trend of dual-axis
swallowing accelerometry signals [11]. Lastly, we investigated
possible demographic effects on those correlations using the
Mann–Whitney test [26]. In this paper, a 5% statistical significance
level was used.

It should be also pointed out that there were pre-processing
steps involved in the analysis. The acquired signals were pre-
processed with the inverse filters developed in [9]. Such filtered
signals were then denoised using the wavelet based approach
[23,27]. Specifically, we implemented a 10-level discrete wavelet
transform using the discrete Meyer wavelet with soft
thresholding as in a previously reported analysis of baseline
accelerometry signals [9].
Table 4
a values in the A–P direction arranged by BMI.

BMIo18:5 18:5rBMIo25 25rBMIo30 BMIZ30

Dry swallows 0.8770.20 0.8970.24 0.9170.21 0.8470.22

Wet swallows 0.9570.27 0.9870.25 0.9670.22 0.9770.21

Wet chin tuck 1.2270.27 1.2770.24 1.2670.21 1.2570.22

Table 5
a values in the S–I direction arranged by BMI.

BMIo18:5 18:5rBMIo25 25rBMIo30 BMIZ30

Dry swallows 1.0970.13 1.0970.16 1.1070.15 1.0770.15

Wet swallows 1.1570.15 1.1370.16 1.1370.16 1.1470.17

Wet chin tuck 1.4070.17 1.4270.16 1.4170.15 1.4370.19
3. Results and discussion

The results of DFA of dual-axis swallowing accelerometry
signals are summarized in Tables 1–5. By comparing the overall a
values for the three swallowing types, it can be observed that the
largest a values occur during the wet chin tuck swallows, while
the smallest values occur for the dry swallows. This observation
holds in the A–P direction regardless of the gender, age or BMI of
participants. On the other hand, the a values for the three
swallowing types were statistically different in both directions
(p50:01).

Higher a values were observed in the S–I direction than in the
A–P direction. These results are expected based on the previous
contributions (e.g., [7,8]), which also noticed that head
movements have more dramatic effects on the vibrations in the
S–I rather than A–P direction (refer to Fig. 2 for three sample
swallows from a participant). In addition, the highest a values are
observed for wet chin tuck swallows. This observation can be
Table 1
a values grouped by gender.

Overall Male

A–P S–I A–P

Dry swallows 0.8870.23 1.0970.15 0.897
Wet swallows 0.9770.23 1.1470.16 1.027
Wet chin tuck 1.2670.23 1.4270.17 1.287
explained by the fact that during wet chin tuck swallows,
participants were asked to make repetitive head movements.
These movements induced stronger temporal dependencies in the
swallowing accelerometry signals.

Visually inspecting the sample signals in Fig. 2(a), (c) and (e),
one might expect 0oao0:5, given that segments with small
fluctuations (i.e., baseline) are intermingled with segments
possessing larger fluctuations (i.e., swallows). Nevertheless, the
analyzed dual-axis swallowing accelerometry signals exhibited
strong positive correlations. We thus speculate that the under-
lying baseline characteristics (e.g., weak vibrations caused by
vasomotion [9]) and head motions are largely responsible for the
observed statistical persistence. This would imply that these
temporal dependencies ought to be carefully considered in the
development of accelerometry-based decision support tools.

When comparing the a values presented here with those
reported in [11], we observe a weaker statistical dependence in
the A–P direction than in the S–I direction when swallows are
present in the recordings. This is due to the fact that head motions
Female

S–I A–P S–I

0.22 1.0870.15 0.8770.24 1.1070.16

0.24 1.1570.17 0.9270.22 1.1270.16

0.23 1.4170.17 1.2570.22 1.4370.17
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Fig. 2. Sample swallows from a participant: sample dry swallowing accelerometry signals in the A–P direction (a) and the S–I direction (b); sample wet swallowing

accelerometry signals in the A–P direction (c) and the S–I direction (d); sample wet chin tuck swallowing accelerometry signals in the A–P direction (e) and the S–I

direction (f).
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exert stronger effects on the signal amplitude in the S–I direction
than in the A-P direction (e.g., [7,8]). Also, the reason for weaker
dependencies in the A–P direction is that swallows produce more
prominent, but transient signal deflection in the A–P
measurement. As expected, the presence of vibrations which do
not persist for a complete observation period diminishes long-
range dependencies. Nevertheless, a decay in a was not observed
in the S–I direction, since head motions induce stronger
amplitude alterations in the S–I signal, and hence higher
correlations in the time series [28]. The prevailing effects of
head motions in the S–I direction thus yielded a higher value for a.
The scaling exponent, a, can be interpreted as the ‘‘roughness’’ of a
time series [21]. This interpretation helps us to appreciate the
occurrence of Brownian-like statistical persistence in the S–I
direction. Head motions, especially during chin tuck swallows,
make these signals appear very smooth in comparison to the
signals from the A–P direction.

There were no gender effects on dry and wet chin tuck swallows
in both directions ðp40:16Þ. However, we observed gender-based
statistical differences for wet swallows in both directions ðpo0:01Þ.
Given that head motions are responsible for the observed statistical
persistence, we anticipate that even minimal motions during wet
swallows induced the observed differences. Furthermore, these
results coincide with findings presented in [22], which demon-
strated that there are statistically significant gender-based differen-
ces in neck angles during wet swallows.
Next, we considered the effects of age on a values. A linear
regression analysis showed that a values from both directions for
the three swallowing types are not affected by the increasing age
of participants ðp40:15Þ. This is an interesting finding given that
a typical swallowing signal contains multiple swallows, baseline
vibrations and possible vibrations associated with head move-
ments. All these components of dual-axis swallowing accelero-
metry signals are affected by the age of the participant. As
reported previously, the baseline vibrations are related to the
cardiovascular dynamics of the participant (e.g., [7,9,11]) and
cardiac dynamics slow down with age (e.g., [29,30]), i.e., slower
variations induce longer dependencies. Also, older participants
require a longer time period to complete a swallow due to the
age-related decoupling of oral and pharyngeal stages of
swallowing [31]. Nevertheless, none of these factors increased a
values in older participants, most likely, due to the prevailing
effects of head motions.

Another important aspect of this research was to understand
whether or not an increasing level of adipose tissue had an effect
on swallowing accelerometry. Here, in particular, we investigated
the potential effect of BMI on the statistical persistence in dual-
axis swallowing accelerometry signals. Tables 4 and 5 summarize
the results of such an analysis, and a values are grouped according
to standardized BMI intervals [32]. These results clearly show that
BMI did not affect the a values in either direction, i.e., the
statistical persistence in dual-axis swallowing accelerometry



E. Sejdić et al. / Computers in Biology and Medicine 40 (2010) 839–844 843
signals remains unchanged for increasing BMI (linear regression
analysis: p40:17). Previous reports in the field found that an
increased level of adipose tissue increases the duration of a
swallow accelerometry signal [7]. However, our findings suggest
that changes in swallow signal duration have minimal effects on
statistical persistence in comparison to baseline effects (e.g., [11]).
Specifically, these results show that head movements have
dominant effects on the observed statistical persistence, since
the strongest persistence was observed in the S–I direction for
wet chin tuck swallows.

3.1. Implications

The key finding is that wet chin tuck swallows induce the
greatest statistical persistence among the types of swallows
studied and that this effect is most prominent in the S–I direction
and tends to mask any other previously reported effect on
statistical persistence (e.g., age). This finding bears several
important implications on the design and usage of any medical
device exploiting dual-axis swallowing accelerometry. Ideally, the
device ought to have the capability to remove large magnitude,
low frequency trends due to head motion. The clinical protocol
associated with the device should probably avoid or limit
swallowing maneuvers which mandate head motions. Alterna-
tively, the measurement of swallowing vibrations may require
immobilization of the patient’s head. In light of the present
findings, swallowing accelerometry might not be appropriate for
individuals with Parkinsonian, essential, dystonic or other types
of head tremors.

Head motions introduce low-frequency trend-like components
into dual-axis swallowing accelerometry signals. Therefore,
methods for detrending non-stationary biomedical data
(e.g., [33]) may be suitable for removing these low frequency
components.
4. Conclusion

In this paper, the statistical persistence of dual-axis swallow-
ing accelerometry signals has been examined. Wet chin tuck
swallows consistently experienced the strongest statistical
dependencies amongst the considered swallows, due to the
dominant effect of head motion. Stronger dependencies were
found in the S–I direction than in the A–P direction regardless of
the swallow type. Finally, there were no effects of gender, age or
BMI on statistical persistence, except for the gender effect
observed for wet swallows.
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